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Abstract: The major point of this text is to show that 
minimization of total potential energy is general rule 
behind the well known rule of minimizing the sum of some 
lengths of a truss mechanism to define a tensegrity. 
Moreover, the well known rule is a special case due to the 
usual high values of the modulus of elasticity. An 
innovative mathematical model is presented for form finding 
of tensegrity structures that is based on the finite 
element method and on mathematical programming. A special 
line element that shows constant stress for any 
displacement of its nodes is used to define a prestressed 
equilibrium configuration. The form finding is formulated 
as an unconstrained nonlinear programming problem, where 
the objective function is the total potential energy and 
the displacements of the nodal points are the unknowns. A 
connection is made with the geometrical shape minimization 
problem, which is defined by a constrained nonlinear 
programming problem. A quasi-Newton method is used, which 
avoids the evaluation of the tangent stiffness matrix. 
 

1 Introduction 
 
In reference [08], Maxwell writes "In those cases in which 
stiffness can be produced with a smaller number of lines, 
certain conditions must be fulfilled, rendering the case 
one of a maximum or minimum value of one or more of its 
lines. The stiffness of such frames is of an inferior 
order, as a small disturbing force may produce a 
displacement infinite in comparison with itself". In 
reference [03], the author that made the connection between 
tensegrity structures and the exceptions to Maxwell’s rule 
writes that presumably Maxwell intended to refer to a 
maximum or minimum value of the length of one or more of 
its lines. An explanation for Maxwell’s obscure remark 
about maximum or minimum values based on the principle of 
minimum total potential energy is presented. A review of 
the important literature related to form finding methods 
for tensegrity structures is given by [14] and more 
recently by [07]. These methods can be classified into 
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kinematical and statical methods. This text concentrates on 
the total potential energy minimization method for form 
finding. A special line element that shows constant stress 
for any displacement of its nodes is used to define a 
prestressed equilibrium configuration. The form finding is 
formulated as an unconstrained nonlinear programming 
problem, where the objective function is the total 
potential energy and the displacements of the nodal points 
are the unknowns. Another approach, which minimizes the 
total potential energy by modifying the lengths of selected 
elements, is described by [12]. A quasi-Newton method is 
used, which avoids the evaluation of the tangent stiffness 
matrix. An interesting connection is made between 
minimizing the total potential energy, which is defined by 
an unconstrained nonlinear programming problem, and the 
geometrical shape minimization problem, which is defined by 
a constrained nonlinear programming problem. The strain 
energy for a line element can be interpreted as a penalty 
function, as it imposes resistance for changing the length 
of the element. The total potential energy minimization 
method for the analysis of cable structures was first 
described by [13]. The following conventions apply unless 
otherwise specified or made clear by the context. A Greek 
letter expresses a scalar. A lower case letter represents a 
column vector. 
 

2 Line element definition 
 
Figure 1 shows the geometry of the element. The nodes are 
labeled 1 and 2. The nodal displacements transform the 
element from its initial configuration to its final 
configuration. The strain is assumed constant along the 
element and the material homogeneous and isotropic. 
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3 Engineering strain 
 
The vector u is a unity vector. Note that λ represents the 
undeformed length of the element. The nodal displacements 
vectors are numbered according to its node numbers. The 
deformed length can be written as: 
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The unit vector parallel to the element in its final 
configuration can be written as: 
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The Engineering strain can be written as: 
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Inaccuracy often results from severe cancellation that 
occurs when nearly equal values are subtracted [06]. In 
order to avoid it, the previous expression should be 
evaluated as: 
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4 Variable stress element 
 
Considering σ as the conjugate stress to the Engineering 
strain ε and α as the undeformed area of the element, the 
potential strain energy and its gradient with respect to 
the nodal displacements can be written as: 
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The gradient can be interpreted as internal forces acting 
on nodes of the element. 
 

4.1 Stress and strain 
 
Consider stress as a linear function of strain with E as 
the modulus of elasticity. The potential strain energy can 
be written as: 
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The strain energy can be interpreted as a penalty function 
with the modulus of elasticity as the penalty parameter. 
The modulus of elasticity, which is usually a big number, 
imposes resistance for changing the length of the elements. 
 

5 Constant stress element 
 



A constant stress element can be defined by imposing a 
constant stress σ. The potential strain energy can be 
written as: 
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The potential strain energy is equal to the force 
multiplied by the relative displacement between the nodes. 
In the expression for the strain energy, the undeformed 
length can be eliminated because it does not depend on the 
nodal displacements. Its permanence in the expression would 
only add constants, one for each element, to the total 
potential strain energy function. To minimize a function 
plus a constant is equivalent to minimize the function 
only. Therefore, the potential strain energy can be 
replaced by: 
 
φ = ασλ  
 
The strain energy is simply the final length of the element 
multiplied by the imposed constant force. The gradient with 
respect to the nodal displacements can be written as: 
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The gradient can be interpreted as internal forces with 
constant modulus acting on nodes of the element. The 
element shows constant stress for any displacement of its 
nodes. A similar element was described by [09]. The element 
was called variable initial length element. 
 

6 Form finding 
 
The initial configuration of a tensegrity structure is 
defined as the configuration of zero nodal displacements 
for all its nodes. A form finding strategy can be defined 
as: Starting with an initial configuration, select some 
elements as constant stress elements by specifying a stress 



value. Find the prestressed equilibrium configuration by 
minimizing the total potential strain energy. 
 

7 Equilibrium configuration 
 
Considering C as the set of constant stress elements, V as 
the set of variable stress elements and u as the vector of 
unknown displacements, the total potential strain energy 
function and its gradient can be written as: 
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The stable equilibrium configurations correspond to local 
minimum points of the total potential energy function, 
which in the absence of external forces reduces to the 
total potential strain energy function. In order to find 
the local minimum points of a nonlinear multivariate 
function, the general strategy that can be used is: Choose 
a starting point and move in a given direction such that 
the function decreases. Find the minimum point in this 
direction and use it as a new starting point. Continue this 
way until a local minimum point is reached. The problem of 
finding the minimum points of a nonlinear multivariate 
function is replaced by a sequence of sub problems, each 
one consisting of finding the minimum of a univariate 
nonlinear function. In the quasi-Newton methods, starting 
with the unit matrix, a positive definite approximation to 
the inverse of the Hessian matrix is updated at each 
iteration. This update is made using only values of the 
gradient vector. A direction such that the function 
decreases is calculated as minus the product of this 
approximation of the inverse of the Hessian matrix and the 
gradient vector calculated at the starting point of each 
iteration. Consequently, it is not necessary to solve any 
system of equations. Moreover, the analytical derivation of 
an expression for the Hessian matrix is not necessary. Note 
that by minimizing the total potential energy function it 
is almost impossible to find an unstable equilibrium 
configuration, which corresponds to a local maximum point. 
The only exception is that it is possible to find a saddle 
point, that is, the point is a local minimum and also a 
local maximum. However, even in this improbable situation, 



a direction of negative curvature to continue toward a 
local minimum point can be found as described by [05]. It 
is important to emphasize that minimizing total potential 
energy to find equilibrium configurations does not require 
support constraints to prevent rigid body motion. The 
computer code uses the limited memory BFGS to tackle large 
scale problems as described by [11]. It also employs a line 
search procedure through cubic interpolation as described 
by [11]. 
 

8 Geometrical shape minimization 
 
Due to the fact that the modulus of elasticity is usually a 
big number, the problem of minimizing the total potential 
strain energy can be interpreted as an equality constrained 
nonlinear programming problem converted to an unconstrained 
nonlinear programming problem by the quadratic penalty 
method. This interpretation leads to an extension of the 
mathematical model for geometrical shape minimization 
described by [02]. 
 
Special case 1: A structure with modulus of elasticity 
equal to all elements, area equal to 1 to all elements and 
stress equal to 1 (tension) to all constant stress 
elements. Minimizing the total potential strain energy can 
be interpreted as minimizing the sum of the lengths of the 
constant stress elements while keeping the lengths of the 
variable stress elements. 
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Special case 2: A structure with modulus of elasticity 
equal to all elements, area equal to 1 to all elements and 
stress equal to -1 (compression) to all constant stress 
elements. Minimizing the total potential strain energy can 
be interpreted as maximizing the sum of the lengths of the 
constant stress elements while keeping the lengths of the 
variable stress elements. 
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9 Examples 
 
Elements shown in red are in compression. Elements shown in 
blue are in tension. Constant stress elements are shown in 
green in the initial configuration. 
 
Example 1: A straight prismoid with height = 3. The bottom 
and top regular triangles are inscribed in a circle of 
radius = 1. It is composed by 3 constant stress elements 
and 9 variable stress elements. 
 
Special case 1: Figure 2 shows the initial shape on the 
left, the final shape with E = 1000 on the center and the 
final shape with E = 10 on the right. Note that the 
constant stress elements are shown in blue color in the 
final configuration. The top triangle rotates 150 degrees 
clockwise relatively to the bottom triangle. 
 

 
Figure 2 

 
Special case 2: Figure 3 shows the initial shape on the 
left, the final shape with E = 1000 on the center and the 
final shape with E = 10 on the right. Note that the 
constant stress elements are shown in red color in the 
final configuration. The top triangle rotates 30 degrees 
counterclockwise relatively to the bottom triangle. 



 

 
Figure 3 

 
Table 1 shows the lengths of the constant stress elements 
in the initial and final configurations. 
 

Table 1 
 Initial E=1000 E=10 

σ=+1 3.4641 2.3473 1.5184

σ=-1 3.4641 3.5329 3.7782
 
Example 2: Figure 4 shows the geometry of a sculpture 
called Stella Octangula, which was proposed by David 
Georges Emmerich. He was a Hungarian architect, sculptor 
and author. An extensive description of his works is given 
by [04]. An analysis of this structure, using the dynamic 
relaxation method, is described by [10]. Recently, a 
modified dynamic relaxation algorithm for the analysis of 
tensegrity structures was proposed by [01]. 
 



 
Figure 4 

 
The geometry is composed by 18 elements with length equal 
to s and 6 diagonal elements with length equal to s 3. 
Table 2 shows the coordinates of the vertices, where the 
parameters r and h are given by: 
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Table 2 

Node Coord-X Coord-Y Coord-Z
1 -s/2 -r/2 h
2 s/2 -r/2 h
3 0 r h
4 0 -2r h
5 s r h
6 -s r h
7 s -r -h
8 -s -r -h
9 0 2r -h
10 0 -r -h
11 -s/2 r/2 -h
12 s/2 r/2 -h

 
Table 3 shows the connectivity of the diagonal elements. 



 
Table 3 

Elem Node Node
3 4 11
6 5 10
9 6 12
12 7 1
15 8 3
18 9 2

 
A Stella Octangula with parameter s = 1, E = 1000 and all 
elements with area = 1. There are support constraints on 
nodes 1, 2 and 3 to prevent rigid body motion. According 
the definition given by [15], a regular tensegrity is 
characterized by equal length for the elements in tension 
and by equal length for the elements in compression. A 
nonregular tensegrity can be generated by imposing 
different stress values for selected elements of a regular 
tensegrity. The regular tensegrity can be recovered by 
imposing equal stress values for the same selected elements 
on the previously generated nonregular tensegrity. Another 
approach to generate a nonregular tensegrity, which is 
based on the dynamic relaxation method, is presented by 
[14]. 
 
Nonregular tensegrity: The stress values for the diagonal 
elements of the regular Stella Octangula and the lengths 
for the diagonal elements of its prestressed configuration 
are shown in Table 4. 
 

Table 4 
Elem Stress Length

3 -1.25 1.4573
6 -1.50 1.5664
9 -1.75 1.6312
12 -2.00 1.8578
15 -2.25 1.8899
18 -2.50 1.8914

 
Figure 5 shows the initial configuration (regular Stella 
Octangula) on the left and its prestressed configuration 
(nonregular Stella Octangula) on the right. 
 



 
Figure 5 

 
Regular tensegrity: The stress values for the diagonal 
elements of the nonregular Stella Octangula and the lengths 
for the diagonal elements of its prestressed configuration 
are shown in Table 5. 
 

Table 5 
Elem Stress Length

3 -1.00 1.7343
6 -1.00 1.7345
9 -1.00 1.7348
12 -1.00 1.7351
15 -1.00 1.7353
18 -1.00 1.7357

 
Figure 6 shows the initial configuration (nonregular Stella 
Octangula) on the left and its prestressed configuration 
(regular Stella Octangula) on the right. 
 



 
Figure 6 

 
Example 3: A circular prismoid with axis on a circumference 
of radius = 10. The section is defined by a regular 
triangle inscribed in a circle of radius = 1. It is 
composed by 72 elements. The modulus of elasticity = 1000. 
The elements have area = 1. Elements in the initial 
configuration that start in the state of constant stress 
are shown in green. There are 3 cable clusters with imposed 
tensions equal to 3, 4 and 5 respectively. There are no 
support constraints to avoid rigid body motion. Figure 7 
shows the initial configuration on the left and the 
prestressed configuration on the right. 
 



 
Figure 7 

 

10 Conclusions 
 
The principle of minimum total potential energy is a 
fundamental concept used in physics. An innovative 
mathematical model is presented for form finding of 
tensegrity structures that is based on the finite element 
method and on mathematical programming. The ability of the 
proposed approach is emphasized showing that it can 
generate a nonregular tensegrity, starting from a regular 
tensegrity, and then recover the regular tensegrity 
starting from the previously generated nonregular 
tensegrity. The use of a quasi-Newton method to minimize 
the total potential energy function has several advantages 
over solving the equilibrium equations in nonlinear 
mechanics: It allows the analysis of under constrained 
structures even without support constraints to prevent 
rigid body motion. It is not necessary to derive the 
tangent stiffness matrix. It is not necessary to solve any 
system of equations. It can handle large scale problems 
with efficiency. 
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