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This text describes a mathematical model for both form 
finding and static analysis of tensegrity structures. A 
special line element that shows constant stress for any 
displacement of its nodes is used to define a prestressed 
equilibrium configuration. The form finding and static 
analysis are formulated as an unconstrained nonlinear 
programming problem, where the objective function is the 
total potential energy and the displacements of the nodal 
points are the unknowns. A quasi-Newton method is used, 
which avoids the evaluation of the Hessian matrix. The 
source and executable computer codes of the algorithm are 
available for download from the website of one of the 
authors. 
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1 Introduction 
 
A review of the important literature related to form 
finding methods for tensegrity structures is given by [8]. 
This text concentrates on the total potential energy 
minimization method for both form finding and static 
analysis of tensegrity structures. A special line element 
that shows constant stress for any displacement of its 
nodes is used to define a prestressed equilibrium 
configuration. The form finding and static analysis are 
formulated as an unconstrained nonlinear programming 
problem, where the objective function is the total 
potential energy and the displacements of the nodal points 
are the unknowns. A quasi-Newton method is used, which 
avoids the evaluation of the Hessian matrix. 
 
The following conventions apply unless otherwise specified 
or made clear by the context. A Greek letter expresses a 
scalar. A lower case letter represents a column vector. 
 

http://www.arcaro.org/
http://www.klinka.hu/
http://engineering.case.edu/profiles/dag6


2 Line element definition 
 
Figure 1 shows the geometry of the element. The nodes are 
labeled 1 and 2. The nodal displacements transform the 
element from its initial configuration to its final 
configuration. The strain is assumed constant along the 
element and the material homogeneous and isotropic. 
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3 Deformed length 
 
The vector u is a unity vector. Note that λ represents the 
distance between the nodes of the element in this initial 
configuration. However, this distance will not always 
represent the undeformed length of the element. The nodal 
displacements vectors are numbered according to its node 
numbers. The deformed length can be written as: 
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The unit vector parallel to the element in its deformed 
configuration can be written as: 
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4 State of constant cut 
 
Consider an element with undeformed length less than the 
initial distance of its nodes. This situation can be 
pictured as an imaginary cut in the element’s undeformed 
length. The element shows tension with zero nodal 
displacements. Considering μ as the value of the cut in the 
undeformed length, the strain-free length of the element 
can be written as: 
 

μ
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λ
 

 
( )0 1λ = λ − ρ  

 
The Engineering strain can be written as: 
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In order to avoid severe cancellation, the previous 
expression should be evaluated as: 
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5 Potential strain energy 
 
Considering σ as the conjugate stress to the Engineering 
strain ε and α as the undeformed area of the element, the 
potential strain energy and its gradient with respect to 
the nodal displacements can be written as: 
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Note that the conjugate stress to the Engineering strain is 
not the Cauchy stress. However, for practical purposes 
where the strain is usually small, this stress can be taken 
as an approximation to the Cauchy stress. 
 

6 Geometric interpretation 
 
Figure 2 shows the geometric interpretation of the gradient 
of the potential strain energy as forces acting on nodes of 
the element. These forces are known as internal forces. 
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7 State of constant stress 
 
Consider an element with strain-free length given by . The 
Engineering strain can be written as: 

0λ
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Supposing that the element shows a constant stress σ, the 
potential strain energy can be written as: 
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The potential strain energy is equal to the force 
multiplied by the relative displacement between the nodes. 
In the expression for the strain energy, the strain-free 
length can be eliminated because it does not depend on the 
nodal displacements. Its permanence in the expression would 
only add constants, one for each element, to the total 
potential energy function. To minimize a function plus a 
constant is equivalent to minimize the function only. 
Therefore, the potential strain energy can be defined as: 
 

1φ = ασλ = ασλ + δ  
 
The gradient with respect to the nodal displacements can be 
written as: 
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The gradient can be interpreted as internal forces with 
constant modulus acting on nodes of the element. The 
element shows constant stress for any displacement of its 
nodes. A similar element was described by [4]. The element 
was called variable initial length element. 
 

8 Internal forces equivalence 
 
A cut value is equivalent to a stress value in the sense 
that they both produce the same internal forces. The 
following approach can be used when stress is a nonlinear 
invertible function of strain. 
 



To find the cut value equivalent to the stress value, first 
find the strain according: 
 
( )σ ε = σ 

 
Then, find the cut value according: 
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λ δ⎛ ⎞μ = ε −⎜ ⎟+ ε + + δ⎝ ⎠
 

 
To find the stress value equivalent to the cut value, first 
find the strain according: 
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Then, find the stress according: 
 

( )σ = σ ε  
 

9 Stress and strain 
 
For simplicity, consider a linear function with E as the 
modulus of elasticity. The potential strain energy can be 
written as: 
 

Eσ = ε 
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10 Analysis strategy 
 
The initial configuration of a tensegrity structure is 
defined as the configuration of zero nodal displacements 
for all its nodes. An analysis strategy can be defined as: 
Select some elements and set them to the constant stress 
state by specifying a stress value. Find the prestressed 
equilibrium configuration. At this equilibrium 
configuration, change the elements from the constant stress 
state to its equivalent constant cut state. Note that the 



equilibrium configuration remains the same. Apply the 
loading and find the final equilibrium configuration. 
 

11 Equilibrium configuration 
 
Considering u as the vector of unknown displacements and f 
as the vector of applied nodal forces, the total potential 
energy function and its gradient can be written as: 
 
( ) ( ) T

elements

u uπ = φ −∑ f u 

 
( ) ( )

elements

u u∇π = ∇φ −∑ f 

 
The stable equilibrium configurations correspond to local 
minimum points of the total potential energy function. In 
order to find the local minimum points of a nonlinear 
multivariate function, the general strategy that can be 
used is: Choose a starting point and move in a given 
direction such that the function decreases. Find the 
minimum point in this direction and use it as a new 
starting point. Continue this way until a local minimum 
point is reached. The problem of finding the minimum points 
of a nonlinear multivariate function is replaced by a 
sequence of sub problems, each one consisting of finding 
the minimum of a univariate nonlinear function. In the 
quasi-Newton methods, starting with the unit matrix, a 
positive definite approximation to the inverse of the 
Hessian matrix is updated at each iteration. This update is 
made using only values of the gradient vector. A direction 
such that the function decreases is calculated as minus the 
product of this approximation of the inverse of the Hessian 
matrix and the gradient vector calculated at the starting 
point of each iteration. Consequently, it is not necessary 
to solve any system of equations. Moreover, the analytical 
derivation of an expression for the Hessian matrix is not 
necessary. Note that by minimizing the total potential 
energy function it is almost impossible to find an unstable 
equilibrium configuration, which corresponds to a local 
maximum point. The only exception is that it is possible to 
find a saddle point, that is, the point is a local minimum 
and also a local maximum. However, even in this improbable 
situation, a direction of negative curvature to continue 
toward a local minimum point can be found as described by 
[3]. It is important to emphasize that minimizing total 



potential energy to find equilibrium configurations does 
not require support constraints to prevent rigid body 
motion. The computer code uses the limited memory BFGS to 
tackle large scale problems as described by [6]. It also 
employs a line search procedure through cubic interpolation 
as described by [6]. 
 

12 Geometrical shape minimization 
 
Consider the following special case: A structure composed 
of elements in the state of constant stress with stress 
equal to one and elements in the state of constant cut with 
cut equal to zero. The area is equal to one for all 
elements. The vector of applied nodal forces is equal to 
zero. The stress strain relationship is given by a linear 
function with E as the modulus of elasticity. The total 
potential energy can be written as: 
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The strain energy of an element in the state of constant 
stress is simply its final length. A high modulus of 
elasticity imposes resistance for changing the length of an 
element in the state of constant cut. The strain energy of 
an element in the state of constant cut can be interpreted 
as a penalty function. The problem can be interpreted as a 
constrained nonlinear programming problem of minimizing the 
sum of the lengths of the elements in the state of constant 
stress while keeping the lengths of the elements in the 
state of constant cut. 
 

13 Examples 
 
Elements shown in red are in compression. Elements shown in 
blue are in tension. Elements in the initial configuration 
that start in the state of constant stress are shown in 
green. 
 
Example 1: A two element truss with a vertical downward 
force applied on the center node. The force was calculated 
to make the element rotates -45 degrees from the 
prestressed configuration. The analytical expression for 
the equilibrium equation is presented in appendix 1. The 



parameter values according to the definitions in this 
appendix are: θ0 = 45 degrees, λ0 = 1, E = 1000, α = 1, σμ = 
1 and f = -587.7864. Table 1 shows the values for the axial 
force. 
 

Table 1 
Analytical Numerical Error

415.6278 415.6278 0%
 
Figure 3 shows the initial configuration on the left and 
the prestressed configuration on the right. 
 

 
Figure 3 

 
Figure 4 shows the prestressed configuration on the left 
and the loaded configuration on the right. 
 

 
Figure 4 

 
Example 2: A pentagonal prismoid with vertical forces 
applied on the top nodes. The bottom nodes are fixed only 
in the vertical direction. The analytical expression for 
the equilibrium equation is presented in appendix 2. The 
parameter values according to the definitions in this 
appendix are: n = 5, ν = 3, ρ = 1, E = 1000 for the diagonal 
elements, E = 1000000 to simulate the inextensible 
elements, α = 1 and σμ = 1. Figure 5 shows the initial 
configuration on the left and the prestressed configuration 
on the right. The rotation angle from the initial 
configuration is equal to 126 degrees. 
 



 
Figure 5 

 
Figure 6 shows the prestressed configuration on the left 
and the loaded configuration on the right for f = 20. The 
rotation angle from the prestressed configuration is 
approximately -34 degrees. 
 



 
Figure 6 

 
Figure 7 shows the prestressed configuration on the left 
and the loaded configuration on the right for f = -20. The 
rotation angle from the prestressed configuration is 
approximately 27 degrees. 
 



 
Figure 7 

 
Table 2 shows the values for the axial force on the 
diagonal elements. 
 

Table 2 
f Analytical Numerical Error 
20.0 30.72 30.71 -0.03% 
-20.0 19.83 19.80 -0.15% 

 
Example 3: This is the same structure described in example 
2, except that E = 1000 for all elements. Figure 8 shows 
the initial configuration on the left and the prestressed 
configuration on the right. The rotation angle from the 
initial configuration is equal to 126 degrees. 
 



 
Figure 8 

 
Figure 9 shows the prestressed configuration on the left 
and the loaded configuration on the right for f = 20. The 
rotation angle from the prestressed configuration is 
approximately -38 degrees. 
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Figure 10 shows the prestressed configuration on the left 
and the loaded configuration on the right for f = -20. The 
rotation angle from the prestressed configuration is 
approximately 45 degrees. 
 



 
Figure 10 

 
Table 3 shows the values for the axial force on the 
diagonal elements. 
 

Table 3 
f Numerical
20.0 27.77
-20.0 4.86

 
Example 4: A circular prismoid with axis on a circumference 
of radius = 10. The section is defined by a regular 
triangle inscribed in a circle of radius = 1. It is 
composed by 72 elements. The modulus of elasticity = 1000. 
The elements have area = 1. Elements in the initial 
configuration that start in the state of constant stress 
are shown in green with tension = 5. There are no support 
constraints. The loading consists of self-equilibrated 
radial forces applied on the nodes of the exterior 
circumference. Due to symmetry, the Tables show information 
for only one fourth of the structure. Figure 11 shows the 
initial configuration on the left and the prestressed 
configuration on the right. 
 



 
Figure 11 

 
Figure 12 shows the prestressed configuration on the left 
and the loaded configuration on the right. 
 



 
Figure 12 

 
Table 4 shows the coordinates for the initial, the 
prestressed and loaded configuration respectively. 
 

Table 4 
Node Coord-X Coord-Y Coord-Z

1 11.0000 0.0000 0.0000
2 9.5000 0.0000 0.8660
3 9.5000 0.0000 -0.8660
4 7.7782 7.7782 0.0000
5 6.7175 6.7175 0.8660
6 6.7175 6.7175 -0.8660
7 0.0000 11.0000 0.0000
8 0.0000 9.5000 0.8660
9 0.0000 9.5000 -0.8660

Node Coord-X Coord-Y Coord-Z
1 9.3879 -0.0000 -2.1490
2 9.9007 0.0000 -0.4922
3 8.2098 0.0000 -0.8759
4 6.6382 6.6382 2.1490
5 5.8052 5.8052 0.8759
6 7.0009 7.0009 0.4922
7 0.0000 9.3879 -2.1490
8 -0.0000 9.9007 -0.4922
9 0.0000 8.2098 -0.8759



Node Coord-X Coord-Y Coord-Z
1 9.5010 -0.0000 -2.0677
2 9.9371 0.0000 -0.3904
3 8.2630 0.0000 -0.8446
4 6.7182 6.7182 2.0677
5 5.8428 5.8428 0.8446
6 7.0266 7.0266 0.3904
7 0.0000 9.5010 -2.0677
8 -0.0000 9.9371 -0.3904
9 0.0000 8.2630 -0.8446

 
Table 5 shows the connectivity of the elements. 
 

Table 5 
Elem Node Node

1 1 2
2 2 3
3 3 1
4 4 5
5 5 6
6 6 4
7 7 8
8 8 9
9 9 7
25 1 4
26 2 5
27 3 6
28 5 8
29 6 9
30 4 7
49 2 4
50 3 5
51 1 6
52 4 8
53 5 9
54 6 7

 
Table 6 shows the applied forces. 
 

Table 6 
Node Axis Force 

1 1 1.4142
4 1 1.0000
4 2 1.0000
7 2 1.4142

 



Table 7 shows the axial force for the prestressed and 
loaded configuration respectively. 
 

Table 7 
Elem Force Force 

1 1.3113 0.5762
2 1.0841 1.5137
3 1.4375 4.7852
4 1.4375 4.7852
5 1.0841 1.5137
6 1.3113 0.5762
7 1.3113 0.5762
8 1.0841 1.5137
9 1.4375 4.7852
25 -5.5232 -6.3702
26 -4.9454 -4.1728
27 -4.9454 -4.1728
28 -4.9454 -4.1728
29 -4.9454 -4.1728
30 -5.5232 -6.3702
49 5.0000 3.7936
50 5.0000 8.5064
51 5.0000 3.7936
52 5.0000 3.7936
53 5.0000 8.5064
54 5.0000 3.7936

 
Example 5: A Stella Octangula as described in appendix 3 
with parameter s = 1. The modulus of elasticity = 1000. The 
elements have area = 1. There are support constraints on 
nodes 1, 2 and 3 to prevent rigid body motion. A nonregular 
tensegrity can be generated by imposing different stress 
values for selected elements of a regular tensegrity. The 
regular tensegrity can be recovered by imposing equal 
stress values for the same selected elements on the 
previously generated nonregular tensegrity. 
 
The stress values for the diagonal elements of the regular 
Stella Octangula and the lengths for the diagonal elements 
of its prestressed configuration are shown in Table 8. 
 

Table 8 
Elem Stress Length

3 -1.25 1.4573
6 -1.50 1.5664
9 -1.75 1.6312



12 -2.00 1.8578
15 -2.25 1.8899
18 -2.50 1.8914

 
Figure 13 shows the initial configuration (regular Stella 
Octangula) on the left and its prestressed configuration 
(nonregular Stella Octangula) on the right. 
 

 
Figure 13 

 
The stress values for the diagonal elements of the 
nonregular Stella Octangula and the lengths for the 
diagonal elements of its prestressed configuration are 
shown in Table 9. 
 

Table 9 
Elem Stress Length

3 -1.00 1.7343
6 -1.00 1.7345
9 -1.00 1.7348
12 -1.00 1.7351
15 -1.00 1.7353
18 -1.00 1.7357

 



Figure 14 shows the initial configuration (nonregular 
Stella Octangula) on the left and its prestressed 
configuration (regular Stella Octangula) on the right. 
 

 
Figure 14 

 

14 Appendix 1 
 
This problem and its relation to tensegrity structures was 
first described by [1]. Figure 15 shows a two element truss 
with a vertical displacement on the center node. 
 

 
Figure 15 
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Geometry 
 

0 0cos cosλ θ = λ θ

δ

 
 

0 0sin sinλ θ = λ θ +  

0θθ



 
Element length 
 
The element length as function of the rotation angle can be 
written as: 
 

( ) 0 0cos
cos

λ θ
λ θ =

θ
 

 
The derivative of the rotation angle with respect to the 
vertical displacement can be written as: 
 

2

0 0

d cos
d cos
θ θ

=
δ λ θ

 

 
Element strain 
 
Considering a cut μ in the initial length of the element, 
its undeformed length can be written as: 
 

0μλ = λ − μ 
 
The element strain can be written as: 
 

( )
1

μ

λ θ
ε = −

λ
 

 
Equilibrium equation 
 
Considering α as the undeformed area of the elements, the 
total potential strain energy can be written as: 
 

( )
0

2 d
ε

μφ = αλ σ ξ ξ∫  

 
The derivative of the total potential strain energy with 
respect to the vertical displacement is equal to the force 
applied in the direction of this displacement. Note that 
the force is positive upward. 
 

d d d
f

d d d
φ ε θ

=
ε θ δ
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Stress and strain 
 
The following approach can be used when stress is a 
nonlinear invertible function of strain. For simplicity, 
consider a linear function with E as the modulus of 
elasticity. By imposing a tension σμ on the elements at the 
prestressed configuration, its undeformed lengths can be 
written as: 
 

( ) 0 00 cos
E 1

1
E

μ μ
μμ

⎡ ⎤λ λ θ
σ = − ⇒ λ =⎢ ⎥ σλ ⎛ ⎞⎢ ⎥⎣ ⎦ +⎜ ⎟

⎝ ⎠

 

 
The cut in the initial length of the elements is given by: 
 

0 μμ = λ − λ  
 
The equilibrium equation can be written as: 
 

f 1
2 sin 1 1

E E c
μσ⎡ ⎤⎛ ⎞

= θ + −⎢ ⎥⎜ ⎟α θ⎝ ⎠⎣ ⎦os
 

 
Figure 16 shows the non dimensional force as a function of 
the rotation angle for σμ/E = 0.001. 
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Figure 16 

 
The axial force on the elements can be written as: 
 

( ) 1
E 1 1

E cos
μσ⎡ ⎤⎛ ⎞

ασ ε = α + −⎢ ⎥⎜ ⎟ θ⎝ ⎠⎣ ⎦
 

 

15 Appendix 2 
 
The analysis described by [7] for a triangular prismoid 
tensegrity is extended to a n-sided polygon prismoid 
tensegrity. Figure 17 shows a straight prismoid. The bottom 
and top regular polygons are inscribed in circles of equal 
radius. The sum of the lengths of the diagonal elements 
(shown in red) is minimized by rotating the top polygon 
counterclockwise with respect to the bottom polygon, while 
the lengths of the elements shown in black remain constant. 
 



 
Figure 17 
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Geometry 
 
For n-sided regular polygons, the coordinates of the 
vertices can be written as: 
 

2
n
π

γ =  
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ρ γ⎡ ⎤
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The following vectors are defined in terms of the 
coordinates of the vertices. 
 

i i 1b p += −  
 
i i il p p += − 1  

 
i iv p= − ip  

 
Interval for the rotation angle 
 



Figure 18 shows the top view of a straight prismoid with 
one diagonal element shown in red. 
 

 
Figure 18 
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The maximum clockwise rotation happens when a diagonal 
element intercepts the vertical axis on the center of the 
circle resulting in diagonal elements interference. This 
rotation angle is given by: 
 

( )minθ = − π − γ  
 
The maximum counterclockwise rotation happens when a 
vertical element (connects corresponding vertices of top 
and bottom polygons) intercepts the vertical axis on the 
center of the circle resulting in vertical elements 
interference. This rotation angle is given by: 
 
maxθ = π  

 
The interval for the rotation angle is: 
 
( )− π − γ ≤ θ ≤ π 

 
Height 
 
The square of the norm of vector vi can be written as: 
 

i i iv p p= − ⇒  
 

( )
2i 2 2v 2 1 cos= ρ − θ + δ θ( ) 

 
Considering ν as the norm of vector vi, which is constant, 
the expression for the height as function of rotation angle 
can be written as: 
 

( ) ( )2 2 22 1 cosδ θ = ν − ρ − θ  



 
Diagonal element length 
 
Considering λ as the norm of vector li, the square of the 
diagonal element length can be written as: 
 

i i ib l v 0+ − = ⇒ 
 

( ) ( )2 2 22 cos cosλ θ = ν + ρ θ − θ − γ⎡ ⎤⎣ ⎦ 
 
Minimum diagonal element length 
 
Due to symmetry, minimizing the sum of the diagonal element 
lengths is equivalent to minimizing the square of one 
diagonal element length. 
 

2 sin
0 tan

cos 1
∂λ γ

= ⇒ θ =
∂θ γ −

 

 
Notice that this expression is valid when the diagonal 
elements connect the corresponding bottom and top points in 
any symmetric way. 
 

0θ > ⇒ 
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Element strain 
 
Considering a cut μ in the initial length of the diagonal 
element, its undeformed length can be written as: 
 

( )0μλ = λ − μ  
 
The element strain can be written as: 
 

( )
1

μ

λ θ
ε = −

λ
 

 



Equilibrium equation 
 
Considering α as the undeformed area of the diagonal 
elements, the total potential strain energy can be written 
as: 
 

( )
0

n d
ε

μφ = αλ σ ξ ξ∫  

 
The derivative of the total potential strain energy with 
respect to the vertical displacement is equal to the force 
applied in the direction of this displacement. This 
derivative is equal to the derivative with respect to the 
height. Note that the force is positive upward when the 
vertical displacements of the bottom vertices are fixed. 
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Stress and strain 
 
The following approach can be used when stress is a 
nonlinear invertible function of strain. For simplicity, 
consider a linear function with E as the modulus of 
elasticity. By imposing a tension σμ on the diagonal 
elements at the prestressed configuration, its undeformed 
lengths can be written as: 
 

( ) ( )2 22 2 1 cos
E 1

1
E

μ μ
μμ

⎡ ⎤λ θ ν − ρ − γ
⎢ ⎥σ = − ⇒ λ =

σλ ⎛ ⎞⎢ ⎥⎣ ⎦ +⎜ ⎟
⎝ ⎠

 

 
The cut in the initial length of the diagonal elements can 
be written as: 
 

( )0 μμ = λ − λ  
 
The equilibrium equation can be written as: 
 



( )
( ) ( )sinf 1 1

n 1
E sμ

⎡ ⎤ θ − γ⎡ ⎤
= − − δ⎢ ⎥ ⎢ ⎥α λ λ θ θ⎣ ⎦⎢ ⎥⎣ ⎦ in

θ  

 
Figure 19 shows the non dimensional force as a function of 
the rotation angle for n = 5, ν/ρ = 3 and σμ/E = 0.001. Note 
that the vertical axis is placed on the position defined by 
the prestressed configuration. 
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Figure 19 

 
The axial force on the diagonal elements can be written as: 
 

( ) ( )
E 1

μ

⎡ ⎤λ θ
ασ ε = α −⎢ ⎥
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16 Appendix 3 
 
Figure 20 shows the geometry of a sculpture called Stella 
Octangula, which was proposed by David Georges Emmerich. He 
was a Hungarian architect, sculptor and author. An 
extensive description of his works is given by [2]. An 
analysis of this structure, using the dynamic relaxation 
method, was described by [5]. 
 



 
Figure 20 

 
The geometry is composed by 18 elements with length equal 
to s and 6 diagonal elements with length equal to s 3. 
Table 10 shows the coordinates of the vertices, where the 
parameters r and h are given by: 
 

s
r

3
=  

 
s

h
6

=  

 
Table 10 

Node Coord-X Coord-Y Coord-Z
1 -s/2 -r/2 h
2 s/2 -r/2 h
3 0 r h
4 0 -2r h
5 s r h
6 -s r h
7 s -r -h
8 -s -r -h
9 0 2r -h
10 0 -r -h
11 -s/2 r/2 -h
12 s/2 r/2 -h

 
Table 11 shows the connectivity of the diagonal elements. 



 
Table 11 

Elem Node Node
3 4 11
6 5 10
9 6 12
12 7 1
15 8 3
18 9 2
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