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This text derives a mathematical model for a 3D orthotropic 
membrane finite element. It consists of a total Lagrangian 
description of a linear elastic material, and can be used 
to calculate either the Green strain or the engineering 
strain. The total potential energy is minimized using a 
quasi-Newton method, making it unnecessary to calculate the 
stiffness matrix. The source and executable computer codes 
of the algorithm are available from the author's website. 
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1 Notation 
 
The following conventions apply unless otherwise specified 
or made clear by the context. A Greek letter expresses a 
scalar. A lower case letter represents a column vector. An 
upper case letter represents a matrix. 
 

2 Introduction 
 
The approach used in this text recovers the basic idea of 
minimizing the total potential energy to find equilibrium. 
In the context of tension structures, this idea was first 
introduced by Coyette and Guisset [1988] for cable network 
analysis. As the total potential energy is a nonlinear 
function of the nodal displacements, a quasi-Newton method 
is used to find its minimum. The advantages of this 
approach are: It is not necessary to derive an expression 
for the stiffness matrix, it is not necessary to solve any 
system of equations, and it permits a simple static 
analysis instead of a pseudo-dynamic analysis, such as 
dynamic relaxation with kinetic damping as described by 
Barnes [1999]. The computer code uses the limited memory 
BFGS to tackle large scale problems as described by Nocedal 
and Wright [1999]. It also employs a line search procedure 
with safeguards as described by Gill and Murray [1974]. 

http://www.arcaro.org/


 

3 Finite element definition 
 
Figure 1 shows a reference system with the xy plane located 
in the plane of the element. The nodes are labeled 1, 2 and 
3 while traversing the sides in counter-clockwise fashion. 
The respective internal angles are labeled α1, α2 and α3. 
Each side is labeled with the number of its opposite node. 
The x axis is chosen parallel to side 3 without loss of 
generality. The strains are assumed to be constant over the 
element. 
 

 
Figure 1 

 

4 Stress strain relations 
 
Considering Figure 2, the transformation of strain and 
stress can be written respectively as follows: 
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where, 
 
c cos= θ , s s  in= θ
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The stress strain relations for the material directions can 
be written as follows: 
 

ˆˆˆ Hσ = ε 
 
where, 
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Ĥ 0

1 1

0 0

ν⎡ ⎤
⎢ ⎥− ν ν − ν ν⎢ ⎥

ν⎢ ⎥= ⎢ ⎥− ν ν − ν ν⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

2G

 



 
ν12 : Poisson’s ratio for strain in direction 2 when 
stressed in direction 1 only. 
 
G12 : Shear modulus in the 1,2 plane. 
 

21 1 12 2E Eν = ν  
 
The stress strain relations for arbitrary directions, where 
the material directions have been rotated a positive angle θ 
from the x-axis, can be written as follows: 
 

ˆˆˆ Hσ = ε 
 

ˆˆ ˆT Hε = ε ⇒ σ = εT  
 

1ˆ ˆˆ T T HT T H−σ = σ ⇒ σ = ε ⇒ σ = εT  
 

TTT I H= ⇒ σ = ε  
 
Where, 
 

TˆH T H= T

xy

 
 

5 Directional strain 
 
The strain of an infinitesimal line segment in the 
direction of a unitary vector ui, can be written as: 
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Considering Figure 1, the directional strains for the sides 
of the triangle can be written as follows. First, note the 
trigonometric relations 
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The three strains are therefore 
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It is easy to show that, 
 

1 2C 2 sin sin sin= α α 3α  

 
and that 
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6 Strain energy density 
 
The strain energy density for a linearly elastic body can 
be written as 
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This can be written in terms of the directional strains by 
the following steps: 
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6.1 Potential strain energy 
 
Considering v as the undeformed volume of the element, the 
potential strain energy can be written as 
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Considering α as the undeformed area of the element and t 
its undeformed thickness, the potential strain energy can 
be written as 
 

( ) ( ) ( ) ( )TT T 11 1 ˆHt TC Ht TC
2 2

− −1φ = ε εα = ε εα 

 
Note that the product of matrix H by the element’s 
thickness can be achieved by multiplying the Young’s 
modulus and the Shear modulus by the element’s thickness. 
The Young’s modulus and the Shear modulus can be thought as 
having the dimension of force by length. 
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6.2 Gradient of the potential strain energy 
 
The gradient of the potential strain energy can be written 
as follows: 
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Note that the stress has been multiplied by the element’s 
thickness. The stress can be thought as having the 
dimension of force by length. 
 

7 Strain components and its derivatives 
 
The nodal displacements vectors are numbered according to 
its node numbers as shown in Figure 3. 
 

 
Figure 3 



 
Their individual components are numbered as follows: 
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To write the directional strain for a side of the triangle 
consider Figure 4, where u is a unitary vector parallel to 
the undeformed side, λ is the undeformed length of the side 
and p and q are the nodal displacements vectors. 
 

 
Figure 4 
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it follows that 
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More generally, consider uk as a unitary vector parallel to 
the undeformed side k and λk as undeformed length of side k. 
 

7.1 Engineering strain 
 
The Engineering strain along the side of the element and 
its derivatives with respect to the nodal displacements can 
be written as follows: 
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The expressions for side 1 can be written as follows: 
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The expressions for side 2 can be written as follows: 
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The expressions for side 3 can be written as follows: 
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7.2 Green strain 
 
The Green strain along the side of the element and its 
derivatives with respect to the nodal displacements can be 
written as follows: 
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The expressions for side 1 can be written as follows: 
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The expressions for side 2 can be written as follows: 
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The expressions for side 3 can be written as follows: 
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8 Equilibrium configurations 
 
The stable equilibrium configurations correspond to local 
minimum points of the total potential energy function. It 
is advisable to use a Quasi Newton type method to find 
these local minimums because it does not require the 
evaluation of the stiffness matrix. 
 
Considering x as the vector of unknown displacements and f 
as the vector of nodal forces, the total potential energy 
function π and its gradient can be written as follows: 
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8.1 Pressure as follower forces 
 
A sequence of major iterations is employed to treat 
pressure as follower forces. At each of these major 
iterations, the pressure is applied as fixed forces on 
nodes, orthogonal to the element’s surface. In general, at 



the start of each major iteration a loading update is 
performed by applying the pressure on the deformed 
configuration obtained in the previous major iteration. The 
exception is the first major iteration, where the pressure 
is applied on the undeformed structure. At each major 
iteration, the equilibrium is obtained through a sequence 
of minor iteration that minimizes the total potential 
energy. 
 

9 Principal stresses 
 
The stresses for the reference system shown in Figure 1 can 
be written as 
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10 Appendix 
 

10.1 Transformation of strain – 2D 
 



Consider Figure 5 that shows a reference system xy which 
has been rotated by an angle θ from the reference system xy. 
Note that εxx can be interpreted as the strain in the 
direction of a unit vector parallel to the x axis. The 
transformation is 
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where, 
 
c cos= θ , s s  in= θ
 
When a body is deformed, the point (x,y) is displaced to 
the point (x + u,y + v), where (u,v) denotes the components 
of the displacement. 
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10.1.1 Engineering strain 
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The strain xx can be written as follows: 
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The strain yy can be written as follows: 
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The strain xy can be written as follows: 
 

( )2 21 u v 1
cs cs c s

2 x y 2

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ = − + + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

u v
y x

u v

y x
 

 

( )2 2
xx yy xycs cs c sε = − ε + ε + − εxy  

 
The transformation for the three strain components can be 
written in matrix form as 
 

( )

2 2
xx

2 2
yy

2 2
xy

c s 2cs

s c 2cs

cs cs c s

⎡ ⎤⎡ ⎤ ⎡ ⎤ε ε
⎢ ⎥⎢ ⎥ ⎢ ⎥ε = − ε⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ε ε− − ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

xx

yy

xy

 

 

10.1.2 Green strain 
 

2 2
1

2

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞ε = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
xx

u u v
x x x

 

 
2 2

1

2

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ε = + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
yy

v u v
y y y

 

 

1

2

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ε = + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
xy

u v u u v v
y x x y x y

 

 

The strain xx can be written as follows: 
 



2 2

2 2
2

2 2

2

1

2

u 1 u v
c

x 2 x x

v 1 u v
s

y 2 y y

u v u u v v
cs

y x x y x y

⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫⎡ ⎤∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞+ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

u u v
x x x

+

+

 

 
2 2

xx yy xyc s 2csε = ε + ε + εxx  

 

The strain yy can be written as follows: 
 

2 2

2 2
2

2 2

2

1

2

u 1 u v
s

x 2 x x

v 1 u v
c

y 2 y y

u v u u v v
cs

y x x y x y

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂+ + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫⎡ ⎤∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞+ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞− + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

v u v
y y y

+

+

 

 
2 2

xx yy xys c 2csε = ε + ε − εyy  

 

The strain xy can be written as follows: 
 



( )

2 2

2 2

2 2

1

2

u 1 u v
cs

x 2 x x

v 1 u v
cs

y 2 y y

1 u v u u v v
c s

2 y x x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎧ ⎫⎡ ⎤∂ ∂ ∂⎪ ⎪⎛ ⎞ ⎛ ⎞− + + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎧ ⎫⎡ ⎤∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ + + +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

u v u u v v
y x x y x y

 

 

( )2 2
xx yy xycs cs c sε = − ε + ε + − εxy  

 
The transformation for the three strain components can be 
written in matrix form as 
 

( )

2 2
xx

2 2
yy

2 2
xy

c s 2cs

s c 2cs

cs cs c s

⎡ ⎤⎡ ⎤ ⎡ ⎤ε ε
⎢ ⎥⎢ ⎥ ⎢ ⎥ε = − ε⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ε ε− − ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

xx

yy

xy

 

 

10.2 Transformation of stress – 2D 
 
The triangle shown in Figure 6 has two of its faces 
orthogonal to the x and y axis respectively. The remaining 
face, whose area is equal to α, is orthogonal to the 
unitary vector u. 
 

 
Figure 6 

 



The projection of the area α on the plane orthogonal to the 
x and y axis can be written respectively as 
 

x xuα = α  
 

y yuα = α  

 
The equilibrium of forces acting on the faces of the 
triangle can be written as 
 

xx x yx y xx x yx y

xy x yy y xy x yy y

u u
f

u u

σ α + σ α σ + σ⎡ ⎤ ⎡
= = α⎢ ⎥ ⎢σ α + σ α σ + σ⎣ ⎦ ⎣

⎤
⎥
⎦
 

 
The stress vector acting on the face orthogonal to the 
vector u can be written as 
 

xx x yx y

xy x yy y

u uf

u u

σ + σ⎡ ⎤
= ⎢ ⎥σ + σα ⎣ ⎦

 

 

xx xy x

yx xy
xy yy y

uf

u

σ σ⎡ ⎤ ⎡
σ = σ ⇒ = ⎢ ⎥ ⎢σ σα ⎣ ⎦ ⎣

⎤
⎥
⎦
 

 
The component of the stress vector, acting on a plane 
orthogonal to vector u1, in the direction of a vector u2, 
can be writen as 
 

1
xx xy x2 2

x y 1
xy yy y

u
u u

u

σ σ ⎡ ⎤⎡ ⎤
⎡ ⎤σ = ⎢ ⎥⎢ ⎥⎣ ⎦ σ σ⎣ ⎦ ⎣ ⎦

 

 

( )1 2 1 2 1 2 1 2
xx x x yy y y xy x y y xu u u u u u u uσ = σ + σ + σ +  

 

Consider Figure 5 that shows a reference system xy which 
has been rotated by an angle θ from the reference system xy. 
 

1
c

u
s

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 ,  2
s

u
c

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

 
where, 
 
c cos= θ , s s  in= θ
 



The stress xx can be written as follows: 
 

2 2
xx yy xyc s 2csσ = σ + σ + σxx  

 

The stress yy can be written as follows: 
 

2 2
xx yy xys c 2csσ = σ + σ − σyy  

 

The stress xy can be written as follows: 
 

( )2 2
xx yy xycs cs c sσ = − σ + σ + − σxy  

 
The transformation for the three stress components can be 
written in matrix form as 
 

( )

2 2
xx

2 2
yy

2 2
xy

c s 2cs

s c 2cs

cs cs c s

⎡ ⎤⎡ ⎤ ⎡ ⎤σ σ
⎢ ⎥⎢ ⎥ ⎢ ⎥σ = − σ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥σ σ− − ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

xx

yy

xy
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