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This text describes a novel mathematical model that unifies all geometrical minimal shape 
problems by defining geometrical finite elements. Three types of elements are defined: line, 
triangle and tetrahedron. By associating a volume for each element type, the elements can be 
used together in the discretization of a geometrical shape. For each element type, its 
corresponding isovolumetric element is also defined. The geometrical minimal shape problem is 
formulated as an equality constrained minimization problem. The importance of this approach is 
that apparently distinct problems can be treated by a unified framework. The augmented 
Lagrangian method is used to solve the associated unconstrained minimization problem. A quasi-
Newton method is used, which avoids the evaluation of the Hessian matrix. The source and 
executable computer codes of the algorithm are available for download from the website of one 
of the authors. 
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1 Introduction 

This text describes a mathematical model that unifies all geometrical minimal shape problems by 
defining geometrical finite elements. Three types of elements are defined: line, triangle and 
tetrahedron. The elements can be used together through the unifying concept of volume. For each 
element type, its corresponding isovolumetric element is also defined. The shape is discretized 
into line, triangle and tetrahedron elements. The elements are interconnected at their nodal 
points. The geometrical minimal shape problem is formulated as an equality constrained 
minimization problem. The augmented Lagrangian method is used to solve the associated 
unconstrained minimization problem. A quasi-Newton method is used, which avoids the 
evaluation of the Hessian matrix. 

The following conventions apply unless otherwise specified or made clear by the context. A 
Greek letter expresses a scalar. A lower-case letter represents a column vector. 

2 Line element definition 

Figure 1 shows the geometry of the line element for a 3D space. The nodes are labeled 1 and 2. 
The nodal displacements transform the element from its initial state to its final state. 



 

Figure 1 
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2.1 Element initial and final volumes 

Let the constant cross-sectional area be 0α . The initial volume can be written as: 

0
0e vφ α=  

The final volume can be written as: 

( ) 0e x vφ α=  

2.2 Gradient of the element final volume 

The gradient with respect to the nodal displacements can be written as: 
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3 Triangle element definition 

Figure 2 shows the geometry of the triangle element for a 3D space. The nodes are labeled 1, 2 
and 3 while traversing the sides in counterclockwise fashion. Each side is labeled with the 
number of its opposite node. The nodal displacements transform the element from its initial state 
to its final state. 
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Figure 2 
1 1 3 2v v x x= + −  
2 2 1 3v v x x= + −  
3 3 2 1v v x x= + −  

1 2w v v= ×  
1 2w v v= ×  

The vectors w  and w  are orthogonal to the element in the initial state and final state, 
respectively. Note that these vectors point toward the observer. 

3.1 Element initial and final volumes 

Let the constant thickness be 0λ . The initial volume can be written as: 

0 0

2e wλφ =  

The final volume can be written as: 

( ) 0

2e x wλφ =  

3.2 Gradient of the element final volume 

The derivatives of the final volume with respect to the nodal displacements can be written as: 

( ) 0 31 2
1 2 32

e
j j j j

i i i i

x ww ww w w
x w x x x

φ λ∂  ∂∂ ∂
= + + ∂ ∂ ∂ ∂ 

 

The vector w  can be written as function of the nodal displacements as: 

1

2

3
x1

x2

x3

v1
v2

v3

v 1
v 2

v 3



1 1 2 2 3 3

1 2 2 3 3 1

w w
v x v x v x
x x x x x x

= +

+ × + × + × +

+ × + × + ×

 

1 1 1

1 2 3
3 2

2 2 2
3 1

1 2 3
2 1

3 3 3

1 2 3

0
0

0

j j j
j j

j j
j j j

j j

j j j

w w w
x x x

v v
w w w v v
x x x

v v
w w w
x x x

 ∂ ∂ ∂
 ∂ ∂ ∂   −
 ∂ ∂ ∂  = −   ∂ ∂ ∂   −  ∂ ∂ ∂
 
∂ ∂ ∂ 

 

( ) 2 3 3 2
0 0

3 1 1 3

1 2 2 1

2 2

j j

e j j j
j

j j

w v w v
x

w v w v w v
x w w

w v w v

φ λ λ
 + −

∂  = + − = × ∂  − 

 

The gradient with respect to the nodal displacements can be written as: 
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4 Tetrahedron element definition 

Figure 3 shows the geometry of the tetrahedron element. The base nodes are labeled 1, 2 and 3 
while traversing the sides in clockwise fashion looking from the apex, which is labeled 4. The 
nodal displacements transform the element from its initial state to its final state. 

 

Figure 3 
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1 1 1 4v v x x= + −  
2 2 2 4v v x x= + −  
3 3 3 4v v x x= + −  

4.1 Element initial and final volumes 

The initial volume can be written as: 

( ) ( )0 1 2 31
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The final volume can be written as: 
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Let 
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The final volume expression can be written as: 
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4.2 Gradient of the element final volume 

The gradient with respect to the nodal displacements can be written as: 
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5 Constraint function for the isovolumetric element 

An element that does not change its volume is desirable for many problem types. Ideally, the 
volume change should be zero for the isovolumetric element in its final state. Considering 0

eφ  as 
the initial volume, a constraint function associated with the isovolumetric element can be defined 
by the relative difference between the final and initial volumes. 
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5.1 Severe cancellation 



Inaccuracy often results from severe cancellation that occurs when nearly equal values are 
subtracted [01]. Note that inaccuracy can result from the difference between the final and initial 
volumes because they can be arbitrarily close for the isovolumetric element. However, severe 
cancellation can usually be eliminated by algebraic reformulation. The relative difference 
between the final and initial volumes, reformulated to avoid severe cancellation, can be written 
for the line, triangle and tetrahedron elements. 
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5.1.2 Triangle element 
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5.1.3 Tetrahedron element 
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5.2 Gradient of the constraint function 

The gradient of the constraint function with respect to the nodal displacements of the element 
can be written as: 
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5.2.1 Line element 
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5.2.2 Triangle element 
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5.2.3 Tetrahedron element 
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6 The minimal shape problem 

The minimal shape problem can be written as an equality constrained minimization problem, 
with one constraint for each isovolumetric element, as: 

( )Min e
e

xφ∑  

Subject to ( ) 0e xϕ =  

6.1 Augmented Lagrangian method 

Historically, the quadratic penalty method was the first method used for constrained nonlinear 
programming. Due to its simplicity, it is still used in practice, although it has an important 
computational disadvantage. The augmented Lagrangian method is related to the quadratic 
penalty method, but it reduces the possibility of ill conditioning by introducing Lagrange 
multiplier estimates into the function to be minimized. The scalar µ  is the penalty parameter and 
the vector λ  is the vector of Lagrange multipliers. The Lagrangian function and its derivatives 
with respect to the displacements can be written as: 
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The augmented Lagrangian function and its derivatives with respect to the displacements can be 
written as: 
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The following algorithm was adapted from [02] and [03]. The iterations terminate if the infinity 
norm of the gradient of the Lagrangian function becomes less than or equal to lε  and the infinity 
norm of the constraint vector becomes less than or equal to cε . 

6.2 Algorithm 

0µ µ←  

( )1min ,α µ γ←  
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( )1 xλ λ ϕ
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ωβω ωα←  

ηβη ηα←  
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( )1min ,α µ γ←  

0
ωαω ω α←  

0
ηαη η α←  

end if 

end loop 

The typical parameter values are: 

1ωα = , 1ωβ = , ( )min 1, 0.1η ωα α< = , ( )min 1, 0.9η ωβ β< =  

0.1τ = , 0 1ω = , 0 1η = , 1 0.1γ = , 0 0.1µ =  

7 Nonlinear Programming Problem 

To find the local minimum points of a nonlinear multivariate function, the general strategy that 
can be used is: Choose a starting point and move in a given direction such that the function 
decreases. Find the minimum point in this direction and use it as a new starting point. Continue 
this way until a local minimum point is reached. The problem of finding the minimum points of a 
nonlinear multivariate function is replaced by a sequence of sub problems, each one consisting of 
finding the minimum of a univariate nonlinear function. In quasi-Newton methods, starting with 
the unit matrix, a positive definite approximation to the inverse of the Hessian matrix is updated 
at each iteration. This update is made using only values of the gradient vector. A direction such 
that the function decreases is calculated as minus the product of this approximation of the inverse 
of the Hessian matrix and the gradient vector calculated at the starting point of each iteration. 
Consequently, it is not necessary to solve any system of equations. Moreover, the analytical 
derivation of an expression for the Hessian matrix is not necessary. Note that by minimizing a 
function it is almost impossible to find a local maximum point. The only exception is that it is 
possible to find a saddle point, that is, the point is a local minimum and a local maximum. 
However, even in this improbable situation, a direction of negative curvature to continue toward 
a local minimum point can be found as described by [04]. The computer code uses the limited 
memory BFGS to tackle large scale problems as described by [05]. It also employs a line search 
procedure through cubic interpolation as described by [05]. 

8 Examples 

The primary colors red, green, and blue are used for the line, triangle and tetrahedron elements, 
respectively. The secondary colors cyan, magenta, and yellow are used for the isovolumetric 
line, triangle and tetrahedron elements, respectively. 

Example 1: An initially flat circular surface with thickness 2λ = , radius 1r =  and the boundary 
displaced according to the following hyperbolic paraboloid equation, where 1 2h = . Figure 4 
shows the meshes for the initial and final surfaces. 410lε

−= . 



 

Figure 4 
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Example 2: A cylinder with thickness 1λ = , radius 1r = and height 1h = . Figure 5 shows the 
meshes for the initial and final surfaces. 510lε

−= . 

 

Figure 5 

The final surface is symmetrical about the Z axis. The following analytical solution for the cross-
section of the surface in the YZ plane is described by [06]. 

( ) cosh zy z c
c

 =  
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Note that ( )0y c= . The value c  is a solution of the following equation. In this example, 
0.8483379c = . 

2 2 cosh
2

r c h
h h c

 =  
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Table 1 shows the relative error for c  with different initial meshes. 

Table 1 



Elements c  Error 
384 0.8470554 0.15 % 

1536 0.8480256 0.04 % 
6144 0.8482543 0.01 % 

Example 3: A frustum cone with thickness 2λ = , upper radius 2 0.5r = , lower radius 1 1r =  and 

height 0.9h = . Figure 6 shows the meshes for the initial and final surfaces. 510lε
−= . 

 

Figure 6 

Example 4: On the top, Figure 7 shows an initial path through the corner points of a rectangle 
with horizontal dimension equal to 4 and vertical dimension equal to 2. The line elements have 
area 1α = . On the bottom, Figure 7 shows the final path. 510lε

−= . 

 

Figure 7 



The general problem of connecting n  points by the shortest path length is called Steiner problem 
[06]. Its solution contains straight lines intersecting at 120 degrees. The number of intersections 
is between 0 and ( )2n − . 

Example 5: An initially flat square surface with thickness 1λ = , side 2s =  and two opposite 
corners displaced by 1 2+  while the two other opposite corners displaced by 1 2− . The edges 
have line elements with area 5α = . Figure 8 shows the meshes for the initial and final surfaces. 

410lε
−= . 

Note that minimizing the total volume results in opposite effects on the lengths of the free edges. 
It tends to decrease the surface area defined by the triangle elements and consequently tends to 
increase the lengths of the free edges. It tends to decrease the path lengths defined by the line 
elements and consequently tends to decrease the lengths of the free edges. In this example, the 
free edges are curved due to relatively small value for the areas of the line elements. 

 

Figure 8 

Example 6: An initially flat square surface with thickness 1λ = , side 2s =  and two opposite 
corners displaced by 1 2+  while the two other opposite corners displaced by 1 2− . The edges 
have line elements with area 500α = . Figure 9 shows the meshes for the initial and final 
surfaces. 410lε

−= . 

Note that minimizing the total volume results in opposite effects on the lengths of the free edges. 
It tends to decrease the surface area defined by the triangle elements and consequently tends to 
increase the lengths of the free edges. It tends to decrease the path lengths defined by the line 
elements and consequently tends to decrease the lengths of the free edges. In this example, the 
free edges are straight due to relatively big value for the areas of the line elements. 



 

Figure 9 

Example 7: A straight prismoid with height 3h = . The bottom and top regular triangles are 
inscribed in a circle of radius 1r = . It is composed by 3 line elements and 9 isovolumetric line 
elements. The line elements have area 1α = . The top triangle rotates 150 degrees clockwise 
relatively to the bottom triangle. Figure 10 shows the initial and final shapes. Appendix 1 
presents analytical expressions for this type of prismoid. 3 5 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 

 

Figure 10 

Example 8: A straight prismoid with height 2h = . The bottom and top regular pentagons are 
inscribed in a circle of radius 1 0.75r =  and 2 0.5r = , respectively. It is composed by 5 line 
elements and 15 isovolumetric line elements. The line elements have area 1α = . The top 
pentagon rotates 126 degrees clockwise relatively to the bottom pentagon. Figure 11 shows the 



initial and final shapes. Appendix 1 presents analytical expressions for this type of prismoid. 
3 5 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 

 

Figure 11 

Example 9: A Stella Octangula as described in Appendix 2 with parameter 1s =  and support 
constraints on nodes 1, 2 and 3 to prevent rigid body motion. A nonregular Stella Octangula is 
generated by imposing different areas for selected elements of a regular Stella Octangula. 
Excluding the diagonal elements, all other elements are isovolumetric elements with area 1α = . 
The areas for the diagonal elements in the initial shape and the lengths of the diagonal elements 
in the final shape are shown in Table 2. 

Table 2 

Elem Area Length 
3 -1.25 1.4563 
6 -1.50 1.5654 
9 -1.75 1.6297 

12 -2.00 1.8555 
15 -2.25 1.8875 
18 -2.50 1.8884 

Figure 12 shows the initial shape (regular Stella Octangula) on the left and the final shape 
(nonregular Stella Octangula) on the right. 3 3 4

0 10 , 10 , 10l cµ ε ε− − −= = = . 



 

Figure 12 

Example 10: The regular Stella Octangula is recovered by imposing equal areas for the same 
selected elements on the previously generated nonregular Stella Octangula. The areas for the 
diagonal elements in the initial shape and the lengths of the diagonal elements in the final shape 
are shown in Table 3. 

Table 3 

Elem Area Length 
3 -1.00 1.7321 
6 -1.00 1.7321 
9 -1.00 1.7321 

12 -1.00 1.7320 
15 -1.00 1.7321 
18 -1.00 1.7320 

Figure 13 shows the initial shape (nonregular Stella Octangula) on the left and the final shape 
(regular Stella Octangula) on the right. 3 3 4

0 10 , 10 , 10l cµ ε ε− − −= = = . 



 

Figure 13 

Example 11: A circular prismoid with axis on a circumference of radius 10r = . The section is 
defined by a regular triangle inscribed in a circle of radius 1r = . It is composed by 30 line 
elements and 60 isovolumetric line elements. The line elements have area 1α = . Figure 14 
shows the initial and final shapes. 3 5 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 

 

Figure 14 

Example 12: A square with side 1s =  composed by 8 isovolumetric triangle elements with 
thickness 10λ = . The square’s perimeter has line elements with area 1α = . The triangle 



elements preserve the square’s area while the line elements minimize its perimeter. The square 
turns into an octagon. Figure 15 shows the initial and final areas. 2 5 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 

 

Figure 15 

Example 13: A cube with side 2s =  composed by 24 isovolumetric tetrahedron elements. The 
cube’s surface has triangle elements with thickness 1λ = . The tetrahedron elements preserve the 
cube’s volume while the triangle elements minimize its surface. The cube turns into a 24 faces 
polyhedron. Figure 16 shows the initial and final volumes. 1 6 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 

 

Figure 16 

Example 14: Figure 17 shows the initial surface connecting two 12-sided polygon boundaries 
inscribed in non-coplanar ellipses. The boundary 1 is shown in cyan. The minor and major axes 
for ellipse 1 are equal to 1.0 and 0.8, respectively. The boundary 2 is shown in red. The minor 
and major axes for ellipse 2 are equal to 2.0 and 1.6, respectively. The minor axes are parallel. 
The major axes are contained in a plane orthogonal to ellipse 2. The left vertex of ellipse 1 is the 
surface apex and it is located at (-0.15, 0, 0.6) from the center of ellipse 2. The right vertex of 
ellipse 1 is located on a line from the apex to the right vertex of ellipse 2. The boundary 1 is 
composed by 36 isovolumetric line elements with area 1.0α = . The boundary 2 is composed by 
144 line elements with area 0.1α = . The surface thickness is 0.1λ = . The apex and the ellipse 2 
vertices are fixed points. Figure 18 shows the final surface. 3 3 6

0 10 , 10 , 10l cµ ε ε− − −= = = . 



 

Figure 17 

 

Figure 18 

9 Appendix 1 

Figure 19 shows a straight prismoid. The bottom and top regular polygons are inscribed in circles 
of different radius. The sum of the lengths of the red lines is minimized by rotating the top 
polygon counterclockwise with respect to the bottom polygon, while the lengths of the black 
lines remain constant. 

 

Figure 19 

9.1 Geometry 

For n -sided regular polygons, the coordinates of the vertices can be written as: 

2
n
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1i i ib p p+= −  

1i i id p p += −  

i i iv p p= −  

9.2 Final height 

The square of the norm of vector iv  can be written as: 
i i iv p p= − ⇒  

2 2 2 22 cosiv r r rr hθθ= + − +  

Since this norm is constant, it leads to the following expression that relates the initial and final 
heights. 

( )2 2
0 2 1 cosh h rrθ θ= − −  

9.3 Rotation angle 

The square of the norm of vector id  can be written as: 

0i i ib d v+ − = ⇒  

( ) ( )2 2 2 22 1 cos 2 cos cosi i id v b r rrγ θ γ θ= + − − − − −    

Due to symmetry, minimizing the sum of the norms of all vectors is equivalent to minimizing the 
square of the norm of only one vector. 

2
sin0 tan

cos 1

id γθ
θ γ

∂
= ⇒ =

∂ −
 

Note that this expression is valid when the vectors connect the corresponding bottom and top 
points in any symmetric way. Table 4 shows the rotation angle in degrees and the values for the 
relation between the initial and final heights for some n -sided regular polygons. 



( )
2 2 1
0 22 2cos 2h h

rr
θρ γ−

= = − +  

Table 4 

n  θ  ρ  
3 150.0 3.732051 
4 135.0 3.414214 
5 126.0 3.175571 
6 120.0 3.000000 
7 115.7 2.867767 
8 112.5 2.765367 
9 110.0 2.684040 
∞  90.0 2.000000 

9.4 Minimum initial height 

The minimum initial height is given by: 

( )
1

2 2
0 2 2cos 2 0h rr rr hθγ≥ − + ⇒ ≥  

10 Appendix 2 

Figure 20 shows the geometry of a sculpture called Stella Octangula, which was proposed by 
David Georges Emmerich. He was a Hungarian architect, sculptor, and author. An extensive 
description of his works is given by [07]. 

 

Figure 20 

The geometry is composed by 18 elements with length equal to s and 6 diagonal elements with 
length equal to 3s . Table 5 shows the coordinates of the vertices, where the parameters r  and 
h  are given by: 

3
sr =  



6
sh =  

Table 5 

Node Coord-X Coord-Y Coord-Z 
1 2s−  2r−  h+  
2 2s+  2r−  h+  
3 0 r+  h+  
4 0 2r−  h+  
5 s+  r+  h+  
6 s−  r+  h+  
7 s+  r−  h−  
8 s−  r−  h−  
9 0 2r+  h−  

10 0 r−  h−  
11 2s−  2r+  h−  
12 2s+  2r+  h−  

Table 6 shows the connectivity of the diagonal elements. 

Table 6 

Elem Node Node 
3 4 11 
6 5 10 
9 6 12 

12 7 1 
15 8 3 
18 9 2 

11 Appendix 3 
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