
Unconstrained Nonlinear Programming 
 
The following conventions apply unless otherwise specified 
or made clear by the context. A Greek letter represents a 
scalar. A lower case letter represents a column vector. An 
upper case letter represents a matrix. 
 

1 Minimizing a multivariate function 
 
Consider a nonlinear function π œ C2. 
 
( ) nx : R Rπ →  

 
Consider the equation of a line, passing through point x0 
and with direction given by vector d. 
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Note that for the points belonging to the line, the 
nonlinear function π(x) becomes function of only one 
variable. 
 

( ) ( ) ( )0x x dπ = π + α = π  
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In order to find the local minimum points of a nonlinear 
multivariate function, the general strategy that can be 
used is: Choose a starting point and move in a given 
direction such that the function decreases. Find the 
minimum point in this direction and use it as a new 
starting point. Continue this way until a local minimum 
point is reached. 
 

1.1 The gradient vector 
 
The first derivative of π(α) can be written as: 
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The gradient vector of π(x) appears naturally in this 
equation. The component gi of the gradient vector of π(x) 
is: 
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1.2 The Hessian matrix 
 
The second derivative of π(α) can be written as; 
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The Hessian matrix of π(x) appears naturally in this 
equation. The component hij of the Hessian matrix of π(x) 
is: 
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1.3 The gradient vector and the Hessian matrix 
 
These two mathematical entities play a key role in the 
analysis and establishment of numerical methods to find 
local minimum points of π(x). The first and second 
derivatives of π(α) can be written as: 
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In structural analysis, the points x are the nodal 
displacements of the structure, the function π(x) is the 
total potential energy, the vector g(x) is the residue 
vector and H(x) is the stiffness matrix. 
 

1.4 The Taylor series expansion 
 
The Taylor series expansion of π(α) about α = 0 can be 
written as: 
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However, 
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Therefore, the Taylor series expansion of π(α) about α = 0 
can be written as: 
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1.5 The descent direction 
 
The previous equation can be written in the following form: 
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It is sufficient to consider only α ≥ 0. Note that walking 
with a negative α in the +d direction is the same as 
walking with a positive α in the -d direction. 
 
If  then, for sufficiently small values of α > 0 

the function π will decrease. 
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In this situation, the direction given by the vector d is 
known as descent direction. 
 

1.6 The descent direction and the gradient vector 
 
Let A be any positive definite matrix. A descent direction 
at a given point x0 can be defined by the following 
expression: 
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It is important to note that the basic numerical methods 
used to find the local minimum points of a nonlinear 
function differ mainly by the choice of this matrix. 
  
A I= ⇒ Gradient method 
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 Newton’s method 

 
A diagonal matrix E is added to the Hessian matrix H to 
ensure that the matrix A is positive definite. 
 

( )1 0A H x−≈  Quasi-Newton method 

 
Starting with the unit matrix, a positive definite 
approximation to the inverse of the Hessian matrix is 
updated at each iteration. This update is made using only 
values of the gradient vector. 
 

1.7 Sufficient conditions for a local minimum point 
 
Consider a nonlinear function π œ C2, given by: 
 
( ) nx : R Rπ →  

 
If g(x*) = 0 and H(x*) is positive definite then x* is 
strictly a local minimum point. 
 
The Taylor series expansion of π(x), on any direction d, 
about x = x* can be written as: 
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Note that for sufficiently small values of α > 0 and 
considering that H(x*) is positive definite, the right side 
of the previous equation will be positive. Therefore, 
 

( ) (* *x d xπ + α > π )  
 
The point x* is strictly a local minimum point of π(x). 
 

1.8 The line search procedure 
 
The procedure to find a minimum point of π(α) for α ≥ 0 is 
called line search. This point will be denoted by α*. Note 
that a descent direction implies that π’(0) < 0. 
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( ) ( )0x dπ α = π + α  

 

( ) ( )T 0g x d d′π α = + α  

 
The line search is the essence of basic numerical methods 
in nonlinear programming. The performance of any method 
greatly depends on the line search performance. The problem 
of finding a local minimum point of a multivariate function 
is reduced to a sequence of problems of finding the minimum 
point of a univariate function. 
 



The line search procedure can be described in the following 
way: Find a first interval (α1, α2) containing α*. Calculate 
α as an approximation for α* using the limit points of the 
interval. Redefine the interval that contains α* with the 
help of α and the sign of π’(α). Continue this way until a 
given accuracy is reached by satisfying a stopping 
criterion. Take the last value for α as the value for α*. 
 
It is important to note that the Quasi-Newton method 
requires a sufficiently accurate line search. This accuracy 
is achieved through the following stopping criterion: 
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This stopping criterion ensures a positive definite 
approximation to the inverse of the Hessian matrix, which 
in turn ensures a descent direction. 
 
It is important to add a counter to limit the number of 
line search iterations because, depending on the value for 
ε, the stopping criterion can never be satisfied. Note that 
the addition of this limit eventually may not lead to a new 
descent direction. Therefore, π’(0) < 0 should be checked at 
the beginning of the line search procedure. If this 
condition is false then the negative of the gradient vector 
can be used as a descent direction. 
 
There are several methods that can be used for the line 
search procedure. However, considering structural analysis, 
only two methods deserve attention. The line fit method, 
whose order of convergence is approximately 1.618 and the 
cubic fit method, whose order of convergence is 2. 
 

1.8.1 Line fit 
 
Find a first interval (α1, α2) containing α*. Fit a line as 
an approximation for π’(α) using α1, π’(α1) and α2, π’(α2). 
Calculate α as the root of the line. 
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Redefine the interval that contains α* with the help of α 
and the sign of π’(α). Continue this way until a given 
accuracy is reached by satisfying a stopping criterion. 
Take the last value for α as the value for α*. 
 

1.8.2 Cubic fit 
 
Find a first interval (α1, α2) containing α*. Fit a cubic 
function as an approximation for π(α) using α1, π(α1), π’(α1) 
and α2, π(α2), π’(α2). Calculate α as the minimum point of 
the cubic function. 
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Redefine the interval that contains α* with the help of α 
and the sign of π’(α). Continue this way until a given 
accuracy is reached by satisfying a stopping criterion. 
Take the last value for α as the value for α*. 
 
To avoid severe cancellation, the difference (u2 – u1) can 
be calculated as: 
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2 Appendix 
 



Equation of a line in 2 dimensions 
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Positive definite matrix 
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A matrix A is positive definite if ( ) Tx x Ax 0φ = >  for all 

nonzero vectors x. Note that ( )xφ  is a scalar. 
 

3 Examples 
 

3.1 The Rosenbrock function 
 
The Rosenbrock function is used as a test problem for 
unconstrained nonlinear programming algorithms. The minimum 
is inside a long, narrow, parabolic shaped flat valley. To 
find the valley is trivial, however convergence to the 
minimum is difficult. 
 
Objective function 
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Notice that the function is given by a sum of squares. 
Therefore there is no possible lower value than zero. 
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The traditional starting point is (-1,-1). 
 
Gradient of the objective function 
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The computer code 
 
-- objective 
f := 100.0 * (x(1) ** 2 - x(2)) ** 2 + (1.0 - x(1)) ** 2; 
 
-- gradient 
g(1) := 400.0 * (x(1) ** 2 - x(2)) * x(1) - 2.0 * (1.0 - x(1)); 
g(2) := -200.0 * (x(1) ** 2 - x(2)); 
 

3.2 Truss element 1 
 
The following figure shows a truss element with one node 
fixed. The modulus of elasticity is given by E and the 
cross section area of the element is given by A. 
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The initial position is given by vector λu, where u is a 
unit vector and λ is the initial length of the element. The 
final position is given by vector l. The displacement from 
the initial to the final position is given by vector x. The 
applied force is given by vector f. 
 
Geometry 
 
For the vectors λu, x and l the following equation can be 
written: 
 
u x l 0 l uλ + − = ⇒ = λ + x  

 



The norm of vector l, which represents the final length of 
the truss element, can be written as: 
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Strain 
 
The strain can be written as: 
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Severe cancelation 
 
The expression for ε may present severe cancelation. This 
happens with the subtraction of two approximate numbers. 
The severe cancelation can be avoided by a mathematical 
equivalent expression for ε. 
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Gradient of the strain 
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Strain energy 
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Total Potential energy 
 



Note that The potential energy due to a force is equal to 
minus the work done by the force. 
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Gradient of the total potential energy 
 

( )x EA∇π = λε∇ε − f 
 

3.3 Truss element 2 
 
The following figure shows a truss element connected to 
nodes i and j. The modulus of elasticity is given by E and 
the cross section area of the element is given by A. 
Consider a structure as a a set of connected elements. 
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The initial position is given by vector λu, where u is a 
unit vector and λ is the initial length of the element. The 
final position is given by vector l. The displacements are 
given by vectors  and ix jx . 

 
Geometry 
 
For the vectors , uλ jx , l and ix  the following equation can 
be written: 
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The norm of vector l, which represents the final length of 
the truss element, can be written as: 
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Strain 
 
The strain can be written as: 
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Severe cancelation 
 
The expression for ε may present severe cancelation. This 
happens with the subtraction of two approximate numbers. 
The severe cancelation can be avoided by a mathematical 
equivalent expression for ε. 
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Gradient of the strain 
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Strain energy 
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Total Potential energy for the structure 
 
Consider that EA is constant for all elements. Consider 
also that each node of the structure has an applied force 
in the direction of its displacement. The potential energy 
due to a force is equal to minus the work done by the 
force. 
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Gradient of the total potential energy for the structure 
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The hanging chain problem 
 
The truss element can be used to define the shape of the 
following structure. Note that the displacements for nodes 
4 and 5 are known. Therefore, the derivatives with respect 
to them are zero. 
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