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Abstract 
 
This text presents a mathematical modeling of a membrane 
finite element. It includes a total Lagrangian description 
using the Green strain definition and assumes a linear 
elastic material. A procedure to define the shape of a 
fabric structure and to analyze it in the presence of 
conservative forces and small strains is summarized. The 
shapes are generated by loading a membrane with 
concentrated forces, distributed force and also by 
prescribing displacements. Mathematical programming 
techniques make the use of stiffness matrix pointless. 
 
Notation 
 
The following applies unless otherwise specified or made 
clear by the context. A Greek letter expresses a scalar. A 
vector is always a column matrix and a lower case letter 
expresses it. An upper case letter expresses a matrix. 
 
Finite element definition 
 
Figure 1 shows a reference system with the xy plane located 
in the plane of the element. The nodes are labeled 1, 2 and 
3 while traversing the sides in counter-clockwise fashion. 
The respective internal angles are labeled α1, α2 and α3. 
The side is labeled with the number of its opposite node. 
The strains are assumed constant over the element and the 
material homogeneous and isotropic. 
 



 
 
Figure 1 
 
Directional strain 
 
Considering the Green strain definition, the strain of an 
infinitesimal line segment in the direction of a unitary 
vector u, for a plane strain field, can be written as: 
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The directional strains for the directions of the sides of 
the triangle leads to the following: 
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It is easy to show that, 
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Strain energy density 
 
The strain energy density for a linearly elastic body can 
 written as: 
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Constitutive relationship 
 
A linear stress strain relationship is assumed according to 
e following expression: 
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E is the Young’s modulus and ν is the Poisson’s ratio. 
Considering the previous definitions of vectors 
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 and εσ , 
the linear stress strain relationship can be written as: 
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Potential strain energy
 
The strain energy density can be written as: 
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e potential strain energy and its gradient, known as the 
internal forces vector, can be written as: 
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 is essential to note that the expressions of potential 
strain energy and its gradient can be written from any 
reference system - the xy plane does not need to be located 
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in the plane of the element. It is easy to show that, 
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rain components and its derivatives 
 
The nodal displacements vectors are numbered according to 
its node numbers as shown in Figure 2. 

 
 
Figure 2 
 
The nodal displacements are numbered according to: 
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 write the directional strain for a side of the triangle 
consider Figure 3, where u is a unitary vector parallel to 
the undeformed side, λ is the undeformed length of the side 
and p and q are the nodal displacements vectors. 
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Considering  as unitary vector parallel to the undeformed 
side k and  as undeformed length of side k, the strain 
components and its derivatives can be written as: 

ku
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Equilibrium configurations 
 
The stable equilibrium configurations correspond to local 
minimum points of the total potential energy function. It 
is advisable the use of a Quasi Newton type method to find 



these local minimums because it does not requires the 
evaluation of the stiffness matrix. 
 
Considering x as the vector of unknown displacements and f 
as the vector of nodal forces, the total potential energy 
function and its gradient can be written as: 
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Principal stresses 
 
To write the principal stresses for an element consider 
Figure 4, which shows a reference system with the xy plane 
located in the plane of the element. 
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Example 
 
A procedure to define the shape of a fabric structure and 
to analyze it in the presence of conservative forces and 
small strains is summarized. Note that when strains are 
small, the Green strain is a reasonable approximation to 
the Engineering strain. 
 
Step 1: The shape is generated by prescribing displacements 
to the initially plane membrane shown in Figure 5. 
 

 
 
Figure 5 
 



Two opposite corners are prescribed a positive displacement 
in the z-axis, which is perpendicular to the plane that 
contains the membrane, while the other two opposite corners 
are prescribed a negative displacement in the z-axis. The 
resulting shape is shown in Figure 6. 
 

 
 
Figure 6 
 
Step-2: The shape defined in the previous step is now used 
as the undeformed shape of the structure. Note that using 
an undeformed shape to analyze a fabric structure implies 
that patterns to build it do not need to compensate for 
strains in the membrane. 
 
A single loading acting upward, similar to weight in 
nature, is applied as a crude simulation to wind uplift 
action. The result is shown in Figure 7. 
 



 
 
Figure 7 
 
As can be seen in Figure 7, parts of the structure are 
flaccid. This flaccidity is due the fact that the upward 
loading tends to increase tension in one part of the 
structure and decrease tension in another part of the 
structure. Since, the structure was undeformed, this is no 
surprise - the structure needs to be tensioned. The 
tensioning must be determined such that the upward loading 
produces no flaccidity. Prescribing displacements to the 
undeformed structure as shown in Figure 8 (red segments) 
may result in the required tensioning. 
 



 
 
Figure 8 
 
Applying both the prescribed displacements and the loading 
acting upward results in a deformed shape shown in Figure 
9. In practice the tensioning process, which is simply 
another loading to the structure, would be achieved through 
tensioning steel cables passing on the edge of the 
membrane. 
 

 
 
Figure 9 



 
Computational performance 
 
Table 1 shows the computational performance on an ordinary 
Pentium machine (200 MHz). The Limited Memory BFGS method 
was used. The line search procedure used cubic 
interpolation. 
 

Table 1 
 

 Shape 
Finding

Analysis 

  Without 
Tensioning

With 
Tensioning 

Iterations 65 945 168 
CPU time (s) 3 33 6 
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APPENDIX 
 
Trigonometry 
 

( )sin sin cos sin cosα + β = α β + β α 
 

( )cos cos cos sin sinα + β = α β − α β 
 
Geometry 
 
Figure 10 shows a reference system with the xy plane 
located in the plane of the element. A positive angle θ from 
the x axis can be used to define the direction of the side 
of the triangle. 
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Figure 10 
 
( ) ( )2 1 3 2 1cos cosθ − θ + α = π ⇒ θ − θ = − α3  
 
( ) ( )2 1 3 2 1sin sinθ − θ + α = π ⇒ θ − θ = − α3 
 
The matrix A 
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