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1 Geometry

Figure 1 shows the geometry for a triangle element.
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The unit vectors w and w are orthogonal to the element’s
surface In the undeformed state and deformed state
respectively. Notice that these vectors points toward the



observer, when nodes associated with the element appear
counterclockwise.

The scalars a and a are equal to twice the area of the

element in the undeformed state and deformed state
respectively.

The scalars § and § are equal to the thickness of the
element In the undeformed state and deformed state
respectively.

2 Deformation gradient tensor

The deformation gradient tensor can be written as:
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Notice that,
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The i1nvariants of the deformation gradient tensor can be
written as:

2.1 Invariant 1
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2.2 Invariant 2
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2.3 Invariant 3
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3 Right Cauchy-Green deformation tensor

The right Cauchy-Green deformation tensor can be written iIn
terms of the deformation gradient tensor as:
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The iInvariants of the right Cauchy-Green deformation tensor
can be written as:
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4 Left Cauchy-Green deformation tensor

The left Cauchy-Green deformation tensor can be written in
terms of the deformation gradient tensor as:

B = FF'

It is easy to show that the invariants of the left Cauchy-
Green deformation tensor are identical to the invariants of
the right Cauchy-Green deformation tensor. The traces of
the first four powers of the left Cauchy-Green deformation

tensor are required to evaluate the coefficients of the
characteristic equation of the Cauchy stress tensor.
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The Cayley-Hamilton Theorem states that every matrix
satisfies Its own characteristic equation.
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5 Strain energy



Consider y as the strain energy function per unit
undeformed volume.

v =y (C1’62’63)
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6 Total potential energy

Consider o as the work done by external forces. The total

potential energy ¢ can be written as a function of the
unknown displacements by a summation over all elements.

¢=Z\v%8—w

The gradient of the total potential energy can be written
as a function of the unknown displacements by a summation
over all elements.

Vo = Z(W)%B—Vw

The gradient of the strain energy function for the element
is calculated using the chain rule and the gradients of the
invariants of the right Cauchy-Green deformation tensor.
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6.1 Derivatives with respect to displacements
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7 Cauchy stress tensor

The Cauchy stress tensor can be written as:
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8 Stress parallel to the element’s surface

The characteristic equation for the Cauchy stress tensor
can be written as:

det (S - ol) = —&° + tr (S) &* - %[trz (S) - tr (sS)] o + det (S) = 0



The principal stress orthogonal to the element’s surface
the deformed state is equal to zero. Therefore, the
characteristic equation reduces to:

o —tr(S)c + %[trz (S) - tr(ss)] =0 =

tr (S) + |/2tr (SS) - tr? (S)
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9 Compressible

9.1 Cauchy stress tensor

The Cauchy stress tensor can be written in terms of the
left Cauchy-Green deformation tensor as:

S =-é££§4—4y2§§—+2wjﬁl
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The traces of the first two powers of the Cauchy stress
tensor, required to evaluate the coefficients of its
characteristic equation, can be written as:

tr (S) = 29, C, + 4,f\lfz c, + 6y,f,

f, 5
tr (SS) =
+4H%HEE; -
C3
+g Ya¥2 (-G + XK, + 6C,) +
C3
+8y, W€, +
g ¥z (& @2 4 2%, + BT, +
~ 1 2 1~2 1~3
C3

+16y,y,C, +
+12y,y,C;



9.2 Thickness

The derivative of the total potential energy with respect
to the thickness of the element iIn the deformed state can
be written as:
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By setting the minimum of the total potential energy equal
to zero, the following expression can be written:
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Notice that unconstrained minimization requires the
following variable transformation to ensure a positive
thickness iIn the deformed state.
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9.3 Stress orthogonal to the element’s surface

The traction vector related to the unit vector orthogonal
to the element’s surface in the deformed state can be
written as:
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The unit vector w is a principal direction associated with
a principal stress given by:
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The minimum of the total potential energy implies that this
principal stress is equal to zero.
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9.4 Right Cauchy-Green deformation tensor

The iInvariants of the right Cauchy-Green deformation tensor
and 1ts derivatives with respect to the nodal displacements
and the thickness of the element can be written as:



9.4.1 Invariant 1
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9.5 Strain energy

The derivatives of the strain energy with respect to the
nodal displacements and the thickness of the element can be
written as:
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9.6 Examples

Note that subtracting a constant from the strain energy
function does not change the minimum points of the total
potential energy. Therefore, only terms that depend on the
invariants of the right Cauchy-Green deformation tensor are
considered iIn the strain energy function.

Example 1: Consider a 10 x 10 square surface made of
compressible Neo-Hookean material. The opposite vertical
sides of the square surface are pulled apart with relative
displacement equal to 3. The strain energy function for
this material i1s given by:



Figure 2 shows the meshes for the initial and final
surfaces.

Figure 2

Table 1 shows the displacements in the Y direction of the
bottom edge nodes compared with ANSYS.

Table 1
Node | Displ Y| ANSYS |Error (%)
210.46150 | 0.46150 0.00
310.55815 | 0.55815 0.00
410.46150 | 0.46150 0.00

Example 2: Consider a 10 x 10 square surface made of
compressible Mooney-Rivlin material. The opposite vertical
sides of the square surface are pulled apart with relative
displacement equal to 3. The strain energy function for
this material i1s given by:
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H, = 0.3750 , p,, = -0.1250 , k¥ = 5.0000

Figure 3 shows the meshes for the initial and final
surfaces.




Figure 3

Table 2 shows the displacements in the Y direction of the
bottom edge nodes compared with ANSYS.

Table 2
Node | Displ Y| ANSYS |Error (%)
2(10.39777|0.39777 0.00
310.48589 | 0.48589 0.00
410.39777 | 0.39777 0.00

Example 3: Consider an initially flat membrane made of
compressible Neo-Hookean material. Two opposite corners are
pulled downward while the other two opposite corners pulled
upward with relative displacement equal to 2.5. The strain
energy function for this material is given by:
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Figure 4 shows the meshes for the initial and final
surfaces.
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Figure 4

Table 3 shows the results for principal stress parallel to
the element’s surface.

Table 3

Stress
Max | 1.235857E+02
Min | -1.204032E+00

10 Incompressible

10.1 Cauchy stress tensor

The Cauchy stress tensor can be written in terms of the
left Cauchy-Green deformation tensor as:

S = 2w1§ + 4\|12§§ - vl

The traces of the first two powers of the Cauchy stress
tensor, required to evaluate the coefficients of its
characteristic equation, can be written as:

tr (S) = 2y,C, + 4y.C, — 3y
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10.2 Thickness

By setting invariant 3 of the deformation gradient tensor
equal to 1, the thickness of the element In the deformed
state can be written as:
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10.3 Stress orthogonal to the element’s surface

The traction vector related to the unit vector orthogonal
to the element’s surface in the deformed state can be
written as:

SW = 2y,BW + 4y BBW — yw
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The unit vector W is a principal direction associated with
a principal stress given by:
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The boundary condition implies that this stress is equal to
zero. Therefore,
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10.4 Right Cauchy-Green deformation tensor

The iInvariants of the right Cauchy-Green deformation tensor
and i1ts derivatives with respect to the nodal displacements
can be written as:

10.4.1 Invariant 1
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10.5 Strain energy

The derivatives of the strain energy with respect to the
nodal displacements of the element can be written as:
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10.6 Examples

Note that subtracting a constant from the strain energy
function does not change the minimum points of the total
potential energy. Therefore, only terms that depend on the



invariants of the right Cauchy-Green deformation tensor are
considered in the strain energy function.

Example 1: Consider a 10 x 10 square surface made of
incompressible Neo-Hookean material. The opposite vertical
sides of the square surface are pulled apart with relative
displacement equal to 3. The strain energy function for
this material is given by:

Figure 5 shows the meshes for the initial and final
surfaces.

Figure 5

Table 4 shows the displacements in the Y direction of the
bottom edge nodes compared with ANSYS.

Table 4
Node | Displ Y| ANSYS |Error (%)
210.50989 | 0.50989 0.00
3]10.61739|0.61739 0.00
410.50989 | 0.50989 0.00

Example 2: Consider a 10 x 10 square surface made of
incompressible Mooney-Rivlin material. The opposite
vertical sides of the square surface are pulled apart with
relative displacement equal to 3. The strain energy
function for this material is given by:
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Figure 6 shows the meshes for the initial and final
surfaces.

Figure 6

Table 5 shows the displacements in the Y direction of the
bottom edge nodes compared with ANSYS.

Table 5
Node | Displ Y| ANSYS |Error (%)
210.44601 | 0.44601 0.00
310.54504 | 0.54504 0.00
410.44601 | 0.44601 0.00

Example 3: Consider an initially flat membrane made of
incompressible Neo-Hookean material. Two opposite corners
are pulled downward while the other two opposite corners
pullled upward with relative displacement equal to 2.5. The
strain energy function for this material 1s given by:
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Figure 7 shows the meshes for the initial and final
surfaces.

Figure 7

Table 6 shows the results for principal stress parallel to
the element’s surface.

Table 6

Stress
Max | 1.842568E+02
Min | -6.711738E+00

Example 4: Consider a 10 x 10 square surface made of
incompressible Arruda-Boyce material. The opposite vertical
sides of the square surface are pulled apart with relative
displacement equal to 3. The Taylor series expansion of the
strain energy function for this material i1s given by:
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Figure 8 shows the meshes for the initial and final
surfaces.



Figure 8

Table 7 shows the displacements in the Y direction of the
bottom edge nodes compared with ANSYS.

Table 7
Node | Displ Y| ANSYS |Error (%)
210.50491 | 0.50648 -0.31
310.61113 | 0.61304 -0.31
410.50491 | 0.50648 -0.31

Considering ¢ as the inverse Langevin function, the strain
energy function for the Arruda-Boyce material is given by:
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In other texts, including ANSYS manual, the following
definitions of the iInvariants are frequently used.

1

det (F) = (C,)2
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