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Abstract 
This text presents a mathematical modeling of a cable 
finite element. It includes a total Lagrangian description 
using the Engineering strain definition and assumes an 
elastic material (linear or nonlinear). A procedure to 
analyze a cable network in the presence of conservative 
forces and small deformations is summarized. Mathematical 
programming techniques make the use of stiffness matrix 
pointless. 
 
Notation 
The following applies unless otherwise specified or made 
clear by the context. A Greek letter expresses a scalar. A 
vector is always a column matrix and a lower case letter 
expresses it. An upper case letter expresses a matrix. 
 
Finite element definition 
The geometry of a one-dimensional cable element is shown in 
Figure 1. The nodes are labeled 1 and 2. The strain is 
assumed constant along the element and the material 
homogeneous and isotropic. 
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Figure 1 

 
Deformed length 
In Figure 2, the λu vector, where u is a unity vector, 
represents the cable element in a configuration with zero 
nodal displacements. It is easy to understand that λ 
represents the distance between the nodes of the element in 
this configuration. However, as will be explained latter, 
this distance will not always represent the undeformed 



length of the element. The vector l represents the element 
in its deformed configuration. The vectors p and q 
represent the nodal displacements vectors. 
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Figure 2 

 
The deformed length can be found as follows: 
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Imposing a constant cut 
Consider an element with undeformed length less than the 
initial distance of its nodes, where initial distance is 
defined as the distance of the two nodes with zero nodal 
displacements. This element can be pictured with a cut in 
its undeformed length. The result is that this element will 
show tension in any rigid body motion that preserves the 
initial distance of its nodes. 
 
The Initial configuration of a cable network is defined as 
the configuration of zero nodal displacements for all its 
nodes. Applying imaginary cuts to selected elements of a 



cable network in its initial configuration is an easy way 
to apply tension to this cable network. Notice that if no 
cuts are present, the initial configuration is also the 
undeformed configuration. 
 
It is worth mentioning that effects due to temperature 
change also can be treated through an imaginary cut in the 
undeformed length of the element. 
 
Strain 
Considering µ as the value of the cut in the undeformed 
length of an element, the cut length of this element can be 
written as: 
 

µλ = λ − µ  
 
After applying a cut, consider a change ∆t in temperature. 
The coefficient of thermal expansion is denoted by αt. This 
sequence leads to the strain-free length as: 
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The strain can be written as: 
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In order to avoid severe cancellation, the strain 
expression should be evaluated as: 
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Potential strain energy 
Considering σ as the conjugate stress to the engineering 
strain ε and α as the undeformed area of the element, the 
potential strain energy and its gradient can be written as: 
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Geometric interpretation 
Considering Figure 2, a unit vector v parallel to the 
element in its deformed configuration can be written as: 
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Using vector v, the gradient of the potential strain energy 
can be written as: 
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Figure 3 shows the geometric interpretation of the gradient 
of the potential strain energy as forces acting on nodes of 
the element. These forces are known as internal forces. 
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Figure 3 

 
Imposing a constant tension 
Consider the following scalar function φ and its gradient: 
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The gradient can be interpreted as internal forces, with 
constant modulus, acting on nodes of an element. The scalar 
function can be interpreted as the corresponding potential 
strain energy. 
 
An element with imposed constant tension can be defined by 
choosing positive value for the constant stress σ0. The 
result is that this element will show constant tension in 
any displacement of its nodes. Applying constant tension to 
selected elements of a cable network in its initial 
configuration is another easy way to apply tension to this 
cable network. 
 
Equivalence between constant cut and constant tension 
A constant cut value is equivalent to a constant tension 
value in the sense that they both produce the same internal 



forces. To find the equivalence between them, consider a 
cable network at a known configuration. 
 
To find the constant cut value equivalent to the constant 
tension value, first find the strain ε according: 
 
( ) 0σ ε = σ  

 
Then, find the cut value µ according: 
 

( ) ( ) t t
t1 1 1 1
λ δ µ = ε + ε + ε ε − + ε + ε + + δ 

 

 
To find the constant tension value equivalent to the 
constant cut value, first find the strain ε according: 
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Then, find the tension σ0 according: 
 

( )0σ = σ ε  
 
Constitutive relationship 
A linear stress strain relationship is assumed according to 
the following expression: 
 

Eσ = ε 
 
Where E is the Young's modulus. The potential strain energy 
can be written as: 
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Equilibrium configurations 
The stable equilibrium configurations correspond to local 
minimum points of the total potential energy function. It 
is advisable the use of a Quasi Newton type method to find 
these local minimums because it does not requires the 
evaluation of the stiffness matrix. 
 



Considering x as the vector of unknown displacements and f 
as the vector of nodal forces, the total potential energy 
function and its gradient can be written as: 
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Example 
A procedure to analyze a cable network in the presence of 
conservative forces and small deformations is summarized. 
 
Figure 4 shows a cable network in its undeformed 
configuration. It is a cable beam, whose design is known as 
Zetlin. 
 

 
Figure 4 

 
A loading consisting of forces acting upward is applied on 
nodes of the top cable as a crude simulation of wind uplift 
action. The wind action is considered as distributed load 
acting along the span of the top cable. The self-weight of 
cables is considered in this analysis. 
 
This loading results in compression of the top cable 
elements in this model. This should be interpreted as the 
elements becoming slack or flaccid. 



 
This flaccidity is due the fact that the upward loading 
tends to increase stress at the bottom cable and decrease 
stress at the top cable. Since the structure was 
undeformed, this result is no surprise - the structure 
needs to be tensioned. The tensioning must be determined 
such that the upward loading produces no flaccidity. 
 
Figure 5 shows the cable network in its undeformed 
configuration with two elements marked in red. 
 

 
Figure 5 

 
Imposing a constant tension to these elements may result in 
the required tensioning. Only the self-weight of cables is 
considered in this step. 
 
It is important to notice that imposing a constant tension 
to selected elements of a cable network is an attempt to 
simulate what is accomplished through hydraulic jacks in 
practice. 
 
The general problem is to choose a specific value for the 
constant tension that results in tension of all elements 
for all loading cases. A good trial value is to set the 
constant tension at a percentage of the breaking tension of 
the rope. The deformed structure can be said tensioned or 
pre-stressed. 
 



Applying the constant cut value equivalent to the constant 
tension value found in the previous step, and the loading 
acting upward results in a deformed configuration shown in 
Figure 6, where all elements show tension. 
 

 
Figure 6 

 
It is important to notice that imposing a constant cut 
equivalent to the constant tension is an attempt to 
simulate what happens after the hydraulic jacks have been 
removed. The action of a hydraulic jack is pictured as to 
shorten the selected element where it is applied. 
 
Computational performance 
Table 1 shows the computational performance on an ordinary 
Pentium machine (200 MHz). The Limited Memory BFGS method 
was used. The line search procedure used cubic 
interpolation. 
 

 Loading Tensioning Tensioning 
Loading 

Iterations 94 423 54 
CPU time (s) 0 1 0 
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